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Abstract

In the current multi-model ensemble approach climate model simulations are com-
bined a posteriori. In the method of this study the models in the ensemble exchange
information during simulations and learn from historical observations to combine their
strengths into a best representation of the observed climate. The method is devel-5

oped and tested in the context of small chaotic dynamical systems, like the Lorenz 63
system. Imperfect models are created by perturbing the standard parameter values.
Three imperfect models are combined into one super-model, through the introduction
of connections between the model equations. The connection coefficients are learned
from data from the unperturbed model, that is regarded as the truth.10

The main result of this study is that after learning the super-model is a very good
approximation to the truth, much better than each imperfect model separately. These
illustrative examples suggest that the super-modeling approach is a promising strategy
to improve climate simulations.

1 Introduction15

There is a broad scientific consensus that our climate is warming due to anthropogenic
emissions of greenhouse gasses (IPCC, 2007). Due to the large impacts of climate
change on society there is a growing need to widely sample and assess the possible
climate change related to the plausible scenarios for future emissions. At about a dozen
climate institutes around the world complex climate models have been developed over20

the past decades. Despite the improvements in the quality of the model simulations, the
models are still far from perfect. For instance a temperature bias of several degrees
in annual mean temperatures in large regions of the globe is not uncommon in the
simulations of the present climate (IPCC, 2007).

Nevertheless these models are used to simulate the response of the climate system25

to future emission scenarios of greenhouse gasses. It turns out that the models differ
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substantially in their simulation of the response: the global mean temperature rise
varies by as much as a factor of 2 and on regional scales the response can be reversed,
e.g. decreased precipitation instead of an increase. It is not clear how to combine these
outcomes to obtain the most realistic response. The standard approach is to take some
form of a weighted average of the individual outcomes (Tebaldi and Knutti, 2007), but5

is this the best strategy?
We think we can do better by letting the models exchange information during the

simulation instead of combining the results of the individual models afterwards. We
propose to combine the individual models into one super-model by prescribing con-
nections between the model equations. The connection coefficients are learned from10

historical observations. This way the super-model learns to combine the strengths
of the individual models in order to optimally reproduce the historical climate. Is this
approach feasible?

An example of combining models successfully is found in the study by Kirtman et al.
(2003) in which they coupled two different atmospheric models to one ocean model.15

It turned out that the most realistic simulation in terms of the annual mean, annual
cycle and interannual variability of sea surface temperatures over the tropical pacific
was obtained by coupling the momentum fluxes from one model and the heat and fresh
water fluxes from the other to the ocean model.

Another indication that this approach might be feasible is found in the practice of data20

assimilation (Compo et al., 2006). It turns out that with a limited amount of information,
the complete state of the atmosphere can be recovered. Synchronization in chaotic
systems provides an explanation why this is at all possible, since linking chaotic sys-
tems with a signal from one system to the other is known to lead to synchronization
of their states (Pecora and Carroll, 1990; Duane et al., 2006). Therefore we expect25

that in the super-modeling approach only limited information needs to be exchanged to
effectively influence the combined behaviour of the imperfect models.

In this paper we use simple chaotic systems to develop and demonstrate the super-
modeling approach. We regard the model with standard parameter values as ground
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truth and create imperfect models by perturbing the parameter values. Three imperfect
models are connected and combined into a super-model. The strength of the connec-
tions are determined from data from the ground truth through a learning process. The
learning process takes the form of the minimization of a cost function that measures
the difference between the truth and the super-model during short integrations.5

In Sect. 2 the form of the connections is introduced, followed by the introduction of the
cost function and the minimisation method. The super-modeling approach is applied
to the Lorenz 63, Rössler and Lorenz 84 systems in Sects. 3 and 4. Discussion and
conclusion of the method and ideas for improvement can be found in Sect. 5.

2 The super-modeling approach10

To introduce the super-modeling approach we use the Lorenz 63 system (Lorenz,
1963). The Lorenz 63 system is often used as a metaphore for the atmosphere,
because of its abrupt regime changes and unstable nature. The equations for the
Lorenz 63 system are

ẋ = σ(y−x)15

ẏ = x(ρ−z)−y (1)

ż = xy−βz.

The standard parameter values are σ=10, β=8
3 and ρ=28. Numerical solutions are

obtained by a fourth order Runge-Kutta time stepping scheme, with a time step of 0.01.

2.1 Connecting imperfect models20

Imperfect models are created by taking three copies of the Lorenz 63 system with
perturbed parameter values. A super-model is created by the introduction of linear
connection terms
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ẋk = σk(yk−xk)+
∑
j 6=k

Cx
kj (xj −xk)

ẏk = xk(ρk−zk)−yk+
∑
j 6=k

Cy
kj (yj −yk) (2)

żk = xkyk−βkzk+
∑
j 6=k

Cz
kj (zj −zk), k =1,2,3,

where k indexes the three imperfect models with perturbed parameter values σk , βk
and ρk and Cx

kj , C
y
kj and Cz

kj are referred to as connection coefficients.5

Each variable of each model is connected to the other two models. This gives two
connection coefficients for each of the variables and a total number of 2×3×3=18 con-
nection coefficients. These 18 coefficients will be learned from data that sample the
truth. The solution of the super-model, denoted by subscript s, is taken to be the
average of the imperfect models10

xs =
1
3

(x1+x2+x3)

ys =
1
3

(y1+y2+y3) (3)

zs =
1
3

(z1+z2+z3).

2.2 Cost function

We assume that we have a long time series of observations of the truth xo. We pick15

initial conditions xo(ti ) from this long time series at K times ti , i=1,···,K , separated by
fixed distances d . Short integrations of length ∆ are performed with the super-model
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starting from these K initializations (see Fig. 1). To measure the ability of the super-
model to follow the truth we introduce the following cost function F , that depends on
the vector of connection coefficients C.

F (C)=
1
K∆

K∑
i=1

∫ ti+∆

ti

|xs(C,t)−xo(t)|2γtdt (4)

The cost function is normalized by 1
K∆ , so that it represents the time averaged mean5

squared error. The factor γt with 0<γ≤1 is introduced to give stronger weight to the
errors close to the initial conditions. The idea behind this is that the Lorenz 63 system
displays sensitive dependence on initial conditions. Trajectories diverge not only due
to model imperfections, but also due to internal error growth: even a perfect model
deviates from the truth if started from slightly different initial conditions and leads to10

a non-zero cost function due to chaos. This implies that the cost function measures
a mixture of model errors and internal error growth. Model errors dominate the inital
divergence between model and truth, but at later times internal error growth dominates.
Since we wish to measure the model errors, the factor γt discounts the errors at later
times to decrease the contribution of internal error growth.15

We base the choice of γ on the doubling time of errors. From a large number of
runs (107) from randomly perturbed initial conditions we estimate the average doubling
time τ of the initial error. We choose γ such that γτ=1

2 , so at time τ the weight is
reduced to 1

2 . For the Lorenz 63 system τ=0.75, which gives γ=0.4. The length of the
short integrations is taken to be ∆=1, which is a little bit longer than the doubling time.20

By comparison the average time for one rotation in the Lorenz 63 system is 0.8. The
separation d between the initializations is 0.2 time units.

2.3 Minimisation

For a fixed choice of the number of initializations K the cost function solely depends
on the connection coefficients C in Eq. (4). The super-model can be determined by25
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finding a minimum in the cost function in the 18 dimensional space of C. For this we
employ the Fletcher-Reeves-Polak-Ribiere Conjugate Gradient method (Fletcher and
Reeves, 1963). It uses the gradient of the cost function to approach minima and stops
when the gradient is (close to) zero.

We found it advantageous to make use of the dependence of the cost function on5

the number of initializations K to avoid shallow local minima. We minimize the cost
function first for a small number of initializations. Subsequently we take this solution
as the initial guess of the minimum for an increased number of initializations to find the
minimum for this set. This process is repeated until we found that the minimum did not
change any longer by increasing the number of initializations. This issue is discussed10

further in Sect. 3.
To avoid negative solutions for the connection coefficients we added an extra term

in the cost function in case one of the coefficients becomes negative. This term is just
the absolute value of the negative connection coefficient, which easily dominates the
value of the cost function.15

3 Results Lorenz 63

Three imperfect models are created by perturbing the standard parameter values as
displayed in Table 1. The perturbed values differ from the standard values by 30–
40% and in each imperfect model parameter values have been increased as well as
decreased. With these perturbations the imperfect models behave quite differently from20

the truth as can be seen in Fig. 2. Both model 1 and 2 are attracted to a point, whereas
model 3 has a chaotic solution that resembles the truth, but the attractor is displaced
and larger. All models were initiated from the same state and the transient evolution
towards the attractor is plotted as well.

By using bifurcation methods, it can be analytically shown that there exists a Hopf25

bifurcation for the Lorenz 63 system at ρH=
σ(3+σ+β)
σ−1−β . This bifurcation marks different

kinds of dynamical behaviour. Both model 1 and 2 have values for ρ below the Hopf
253
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bifurcation, whereas model 3 has a value for ρ that lies far above the Hopf bifurcation.
For the truth the value of ρ lies above the Hopf bifurcation as well, which is why model 3
and the truth have similar behaviour.

The minimization procedure outlined above successfully identified a minimum of the
cost function with a value of 0.02. By comparison the value of the cost function for an5

arbitrary choice of all connection coefficients equal to unity is 0.5. With the connection
coefficients of this minimum we performed a long integration with the super-model and
plotted the trajectory in Fig. 3. The attractor of the super-model is very close to the
true attractor. While integrating the super-model, the imperfect models fall into an
approximate synchronous behaviour due to the connections: the temporal correlations10

between the x, y , and z variables of the three models are in excess of 0.95 (not shown)
and the sum of the time-mean distances between the three model states normalized
by the sum of the standard deviations of xs, ys and zs is 0.34. In particular the z-values
of the third model are systematically larger than those of the other two models (see
Fig. 4). The improvement in the behaviour of the connected imperfect model solutions15

as depicted in Fig. 4 (to be compared with Fig. 2) is a clear indication of the feasibility
of super-modeling in the context of this low-dimensional chaotic system.

In addition to this minimum, we found that by choosing different initial values for the
connection coefficients in the minimization procedure different local minima in the cost
function are obtained with values of the cost function that are of comparable magnitude.20

In the remainder of this section we will test the robustness of the learning process,
research the issue of local minima and develop measures to determine the quality of
the different super-model solutions.

3.1 Robustness

The minimum of the cost function is determined on a limited period of observations25

of length (K−1)×d+∆ that we refer to as the training set. We have chosen K=200
to determine the minimum and subsequently evaluate the cost function using the
C values of this minimum for subsets of the training set of length corresponding to
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K=20,50,100,150. Cross sections of the cost function around the minimum can be
created by changing one connection coefficient and keeping the others fixed at the val-
ues of the minimum. The cross sections for the different subsets are plotted in Fig. 5
for connection coefficients Cy

23 and Cz
21, since these are typical examples.

In Fig. 5a the cost function for K=200 displays one well defined minimum Cy
23=10.1.5

The position of the minimum does not change much when the cost function is cal-
culated using the different subsets. The minimum becomes more pronounced as the
training set is enlarged. The values of the cost function monotonically converge and
K=200 seems a reasonable size of the training set. Figure 5b does not show a well
defined minimum for any K . Note that the scale is smaller than in Fig. 5a. The values of10

the cost function do not change much in the different subsets and the slopes are very
flat. Changing connection coefficient Cz

21 apparently does not change the quality of the
solutions much. A family of super models of similar quality can be found by changing
connection coefficient Cz

21 between 8 and 14.
Ideally the super-model found by the learning process is not dependent on the train-15

ing set. To test whether K=200 is large enough for this to be true the cost function
is plotted in Fig. 6 for different periods of observations: the training set and indepen-
dent sets of the same size that were obtained from a longer consecutive integration of
the truth. Again the cross sections for connection coefficients Cy

23 and Cz
21 are shown

(Fig. 6). In Fig. 6a the position and value of the minimum remain close to that of the20

training set. In Fig. 6b the cost function is flat for all sets of observations. We conclude
that with K=200 the cost function verifies rather well on independent data, so K=200
seems a reasonable size of the training set.

3.2 Local minima

In the previous section we noted that there is a large family of super-model solutions25

with similar values of the cost function connected to the minimum found by the mini-
mization procedure. The minimization was repeated starting from random values for
the connection coefficients between [0,10] that were drawn from a uniform probability
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distribution. In this way we found other minima that are distinct in many more connec-
tion coefficients. For one of these minima, the connection coefficients are shown in
Table 2, together with the values for the first minimum. In the fourth column the differ-
ence between the connection coefficients of minima 1 and 2 indicates that the minima
are clearly distinct and do not belong to the same family of solutions.5

A plot of the attractor of the second super-model solution in its phase space (not
shown) looks almost exactly the same as the plots of the first super-model solution in
Figs. 3 and 4. The value of the cost function for the second solution is slightly lower
(0.003 instead of 0.02) and is a first indication that the second solution might be better.
In the next section we will use various measures to evaluate the quality of these two10

super-model solutions.

3.3 Quality measures

The cost function is a measure of the quality of the short term behaviour of the super-
model in which the initial conditions play a role as is the case in weather predictions.
To evaluate the quality of the super-model beyond the range that is influenced by the15

initial conditions, different measures can be used as in climate simulations.
The most straightforward measures are the different moments of the probability den-

sity function of the states in phase space, such as the mean, variance and covariance
of the state variables. Since these do not take into account the temporal evolution
through phase space, we will also evaluate the ability of the super-model to reproduce20

the autocorrelation functions of the state variables. As a final measure we will check
the ability of the super-model to synchronize with the truth at the end of this section.

Mean, standard deviation and covariance

The calculation of these statistics is based on 500 runs of 5000 time units of the truth,
the imperfect models and both super-models. An error estimation of these quantities is25
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based on the spread of the 500 estimates of each quantity. The results for the imperfect
models are given in Table 3 and for the truth and both super-models in Table 4.

For the parameter values of model 1 and 2 the attractor reduces to two stable point
attractors. The x, y and z values of these fixed points can be calculated analytically
from Eq. (1) by setting the time derivatives to zero. Since the system settles in one5

of these point attractors depending on the initial condition, the mean values are equal
to these values. The statistics of the chaotic solution of model 3 (see Table 3) differ
substantially from the truth (see Table 4), especially the mean value of z is much larger.

Both super-models (see Table 4) have statistics that are close to that of the truth with
the largest differences of order 5% in the covariance between x and y . The second10

super-model is somewhat closer to the truth, especially in the covariance of x and y .

3.4 Autocorrelation

The autocorrelation is a statistical measure of the temporal evolution. It gives an in-
dication of the memory and time scales present in a system. The plots in Fig. 7 are
based on 100 runs of 3000 time units and the shading corresponds to the 95% error15

range of the autocorrelation of the truth.
Both super-models capture the fast decorrelation of x and y and the slow decorrela-

tion of z well, but the second super-model is closer to the truth. It also better represents
the dominant time scale which is most apparent in the autocorrelation of z. After 9 os-
cillations super-model 1 is lagging the truth somewhat, whereas super-model 2 is still20

in phase.

3.5 Synchronization with the truth

Pecora and Carroll (1990) have shown that limited information exchange between two
identical Lorenz systems can lead to synchronization of the model states even when
the systems are initialized from very different initial conditions and differ slightly in pa-25

rameter values. The ability to synchronize with the truth is another measure of the
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quality of a model. In this section we will compare how well the super-models compare
to a perfect model in this respect.

Yang et al. (2006) extended the study of synchronized Lorenz systems, re-interpreted
in the context of data assimilation. Following Yang et al. (2006) we add a so-called
simple nudging term to the equations of the y variable for each of the three connected5

imperfect models as in Eq. (5). This term “nudges” the actual values of yk to the
observed value yo and the value of parameter n determines the strength of the nudging.

ẋk = σk(yk−xk)+
∑
j 6=k

Cx
kj (xj −xk) (5)

ẏk = xk(ρk−zk)−yk+
∑
j 6=k

Cy
kj (yj −yk)+n(yo−yk)

żk = xkyk−βkzk+
∑
j 6=k

Cz
kj (zj −zk) k =1,2,310

We take the following definition of synchronization:

Definition 1 A model is synchronized with the truth if the RMS difference between the
model state and observed true state at t=t0 is smaller than δ and remains smaller than
ε for t→∞.

ε is chosen larger than δ, since synchronized systems often deviate somewhat dur-15

ing short extreme excursions of the trajectory, but remain synchronized. As a measure
of synchronization we use the minimum strength of the nudging n for which synchro-
nization is accomplished independent of the initial condition, for integer n. For practical
purposes we choose a time interval of T=1000 time units during which the models
must remain within ε distance of each other.20

How quickly systems synchronize very much depends on the initial conditions (Yang
et al., 2006), therefore we check synchronization for 100 restarts from different initial-
izations. By trial and error we found that two identical Lorenz systems with standard

258

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/1/247/2010/esdd-1-247-2010-print.pdf
http://www.earth-syst-dynam-discuss.net/1/247/2010/esdd-1-247-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
1, 247–296, 2010

Combining imperfect
models through

learning

L. A. Van den Berge et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

parameter values (what we call the truth) synchronize using n=3, δ=2 and ε=4 for all
100 initializations.

To compare the two super-model solutions the same set of 100 initializations are
used. The first super-model needs a nudging strength of n=11 in order to synchronize
with the truth. The second super-model needs a somewhat larger value n=13. Using5

the same experimental setup, we found that the imperfect models individually are not
able to synchronize with the truth at all. Both super-models need a stronger nudging
than the perfect model. In this measure, the first super-model is closer to the truth,
despite the fact that the mean temporal evolution, as measured by the autocorrela-
tion, is more faithfully captured by the second super-model that also has a smaller cost10

function value. However, if we calculate the probability density function of the distance
between the truth and the super-model from a 105 time units long integration of the
super-model nudged to the truth as in Eq. (5) for n=6, we find that more often the
second super-model remains closer to the truth than the first super-model (see Fig. 8).
Nevertheless, the second super-model needs a slightly larger nudging strength to syn-15

chronize with the truth than the first because for nudging values larger than n=5, it has
larger probability, albeit small, of exceeding the threshold ε=4. For n=6 the distance
between the second super-model and the truth is larger than 4 during 1.6% of the time
whereas it is 1.3% for the first. For n=10 it is 0.27% for the second and 0.075% for the
first. This probability becomes small enough to meet the synchronization criterium of20

Definition 1 for n=13 for the second super-model, whereas for the first this happens for
n=11. We conclude that the interpretation of the ability of a model to synchronize with
the truth as a measure of the quality of a solution is not so straightforward.

All measures indicate that the second super-model is closer to the truth than the
first. It turns out that the value of the cost function is indeed a good indication of the25

quality of the solution and that the approach of minimizing the cost function is a fruitful
strategy.
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3.6 Simulating climate change

In order to check whether the super-model is also able to simulate climate change,
for instance the response of the truth to a parameter perturbation, we doubled the
parameter ρ in the true system and in the imperfect models in the super-model. The
response of the attractor is an increase in size, the shape remains very similar (see5

Fig. 9). Although the connection coefficients are learned for ρ=28, the super-model
quite accurately simulates the attractor for ρ=56. The mean z-value increases with
a factor of 2.2 for both the truth as well as the super-model. The response is practically
the same for both super-models.

4 Results Rössler and Lorenz 8410

In this section the super-modeling approach is applied to the Rössler and the Lorenz 84
systems. Both display chaotic behaviour for standard parameter settings, but the at-
tractors are quite different.

4.1 Rössler

The Lorenz 63 attractor is also called a butterfly, because of its shape. As a simplifica-15

tion of this example of chaos to one where the attractor only has one “wing”, the Rössler
equations were proposed (Rössler, 1976). The time evolution is less chaotic than in the
Lorenz 63 system, since it lacks the irregular transitions between two unstable points.
The equations are

ẋ = −(y+z)20

ẏ = x+ay (6)

ż = b+z(x−c).
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The parameter values for the truth are Rösslers values: a=0.2, b=0.2 and c=5.7.
The values for the parameters for the three imperfect models can be found in Table 5.
The parameter perturbations applied are again of the order 30% to 40% and in each of
the imperfect models parameters have been decreased as well as increased.

With these parameter perturbations, marked changes occur in the attractor as can5

be seen in Fig. 10. The attractor of imperfect model 1 is still chaotic and has a similar
shape, but the amplitude of the irregular oscillations is larger. Imperfect model 2 and 3
have a periodic attractor of different shapes.

To determine the super-model we first need to choose values for the different param-
eters in the cost function. For the Rössler system the time it takes for initial errors to10

double is on average 6.7. Following the same procedure as for the Lorenz 63 system
we set γ=0.9 and ∆=12 time units. The number of initializations in this case is K=300.

We minimized the cost function by varying the connection coefficients of the super-
model. This minimum is plotted in Fig. 11 in a cross section along Cx

23. The value
at the minimum is approximately 0.0001, which is much lower than a typical value15

of the cost function (0.004 for all connection coefficients equal to 1). To check the
robustness of this minimum with respect to the limited size of training set, we calculated
the cost function for 9 additional sets of 300 initializations, that were taken from a longer
simulation of the truth. The figure shows that 300 initializations are enough to reliably
estimate the cost function. This minimum is not unique. By changing the initial values20

of the connection coefficients in the minimization procedure, we found different minima
with similar values of the cost function as was the case for the Lorenz 63 system. Here
we evaluate the quality of this minimum only.

With the connection coefficients of this minimum, we integrated the super-model and
plotted the trajectory of the three connected imperfect models in Fig. 12. The three25

models fall into an approximate synchronous behaviour, but especially the amplitudes
of the excursion in the z direction are different with model 3 making the largest excur-
sions. The temporal correlations between the x, y , and z variables of the three models
are in excess of 0.99 (not shown) and the sum of the time-mean distances between the

261

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/1/247/2010/esdd-1-247-2010-print.pdf
http://www.earth-syst-dynam-discuss.net/1/247/2010/esdd-1-247-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
1, 247–296, 2010

Combining imperfect
models through

learning

L. A. Van den Berge et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

three model states normalized by the sum of the standard deviations of xs, ys and zs is
0.18. The super-model solution, which is defined as the average of the three imperfect
models, is plotted in Fig. 13 for two points of view. Visually the attractor of the super
model is very similar to the true attractor. We will apply the same measures as for the
Lorenz 63 system to check the quality of the super-model.5

First we compare the means, standard deviations and covariances for the uncon-
nected imperfect models in Table 6 and for the super-model and the truth in Table 7.
The super-model turns out to be closer to the truth than the best imperfect model
(model 3). Its statistics almost fall within the 95% error bounds of the true values.

To compare the temporal behaviour we calculated the autocorrelation functions as10

plotted in Fig. 14 for the truth and the super-model. They indicate a strongly periodic
behaviour with a long decorrelation time scale. For all three variables the autocorrela-
tion function is close to and sometimes within the 95% error band, again indicating that
the super-model is a very good approximation of the truth.

Finally we look at the minimum nudging strength needed to enable synchronization15

with the truth. We use the same definition of synchronization as for the Lorenz 63
model with the following values for the parameters δ=0.05, ε=0.4 and T=1000 time
units. When the nudging term is applied to the y variable only, we find that the standard
Rössler system synchronizes with a copy of itself for a nudging strength equal to n=1.
The super-model also synchronizes when nudging only the y variable, but it needs20

a stronger nudging of n=2. It outperforms model 3 in this measure; even by replacing
the y variable with the true value (which corresponds effectively to an infinitely large
nudging strength), synchronization does not occur.

To conclude, also in the case of the Rössler system, super-model solutions can be
found by combining imperfect models that give a very good approximation to the truth.25

This may not be surprising since the Rössler system is less chaotic than the Lorenz 63
system (note the long autocorrelation time-scale in Fig. 14) and more regular behaviour
is presumeable easier to reproduce. On the other hand, a more chaotic system has
richer dynamics (more time-scales, instabilities etc) thus the connected models have
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more degrees of freedom to mimick the truth. Beforehand it is hard to predict whether
more chaos helps or hurts, so we test the super-modeling approach also on the more
chaotic Lorenz 84 system.

4.2 Lorenz 84

The Lorenz 84 system was proposed by Lorenz as a toy model for the general atmo-5

spheric circulation at midlatitudes (Lorenz, 1984). The model equations are

ẋ = −y2−z2−ax+aF

ẏ = xy−bxz−y+G (7)

ż = bxy+xz−z.

The x variable represents the intensity of the globe-encircling westerly winds and y10

and z represent a travelling large-scale wave that interacts with the westerly wind. Pa-
rameters F and G are forcing terms representing the average north-south temperature
contrast and the east-west asymmetries due to the land-sea distribution, respectively.

The standard parameter values for the truth are a=1
4 , b=4, F=8 and G=1, for which

the model displays chaotic behaviour (van Veen, 2001). In Table 8 the perturbed pa-15

rameter values of the imperfect models are given. The perturbations are again about
30% and in each imperfect model parameters have been decreased as well as in-
creased.

With these parameter perturbations the attractor of the imperfect models differ sub-
stantially from the truth (see Fig. 15). Both model 1 and 3 have periodic attractors,20

whereas model 2 has a point attractor (the transient evolution towards the point attrac-
tor is shown for model 2). The periodic behaviour corresponds to the wave traveling
periodically around the hemisphere.

Following the same procedure as before to find the parameters used in the cost
function we found γ=0.5 and ∆=2.2 time units, based on the average time it takes25
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for initial errors to double (on average 1.1 time units). However with these values the
minimization algorithm did not produce a well defined minimum of the cost function.
The high value of the autocorrelation function of x (0.6 at 8 time units, see Fig. 18)
indicates that the initial conditions still have an impact on the evolution after 8 time
units. Therefore we decided to increase ∆ to 8 and γ to 0.8. In addition it turned5

out that it was easier to find good minima using the amoeba minimization algorithm
(Nelder and Mead, 1965) instead of the conjugate gradients minimization. The amoeba
method does not need gradient information and is less susceptible to getting stuck in
local minima. The training set is based on K=200 initializations, each 0.2 time units
apart selected from a long simulation of the truth.10

Starting from different initial values for the connection coefficients we found different
minima of the cost function. A cross section through the best minimum that we found
is shown in Fig. 16. The value at this minimum is approximately 0.0003, which is
again much lower than the value of the costfunction for all connection coefficients equal
to 1 (0.08). To check the robustness the cost function is evaluated on 9 additional15

independent sets of 200 initializations. In all 9 sets the minimum is reproduced around
the same value of the connection coefficient. The same is true for cross sections of the
other connection coefficients (not shown).

With the connection coefficients for this minimum, we integrated the super-model and
plotted the trajectory in Fig. 17. A visual comparison with the truth indicates a very good20

agreement. In this case the three imperfect models are almost perfectly synchronized
(not shown). The synchronization is stronger in this case as compared to the other
two systems. The temporal correlations between the x, y and z variables of the three
imperfect models in the super-model are in excess of 0.99 and the sum of the time-
mean distances between the three model states normalized by the sum of the standard25

deviations of xs, ys and zs is only 0.03. The model trajectories stay very close together
on average. The reason for this might be found in the high value of several connection
coefficients (for instance Cx

32=115, Cy
23=147 and Cz

31=169). Such high values make
synchronization easier since these connection terms in the equations bring the model
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solutions closer together. Maximum values of the connection coefficients in the other
two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of the super-model solution.
The mean, standard deviation and covariance for the truth and the super-model are
presented in Table 9. These statistics are in excellent agreement.5

In order to evaluate the temporal behaviour we compare the autocorrelation functions
in Fig. 18. Up to a delay time of 14 time units the autocorrelation functions of the truth
are well reproduced by the super model both in shape as well as in periodicity.

The Lorenz 84 system with standard parameter values synchronizes with the truth
for a strength of the nudging term n=1 in the y variable only, using δ=0.1, ε=0.5 and10

T=1000 in Definition 1. The super-model also synchronizes with the truth, but it needs
a larger nudging of n=4. None of the imperfect models is able to synchronize with the
truth, when the nudging is in the y variable only.

Concluding this section, super-model solutions can be found that reproduce the true
system very well and outperform the individual imperfect models for the Lorenz 84 sys-15

tem as well. For this system, the minimization process was found to be more sensitive
to the length of the short integrations ∆ and the discount parameter γ, requiring the
use of the more robust amoeba minimization procedure.

5 Conclusion and discussion

In this study we developed and tested a novel multi model ensemble approach in which20

imperfect models of an observable system are combined into a single super-model
by letting the models exchange information during the simulation. The information
exchange takes the form of linear connections with weights that are learned from past
data such that the super-model minimizes the mean squared errors in short simulations
initialized from past observed states. The main result of this study is that it is possible25

to construct super-models in the context of simple low-dimensional chaotic systems
that outperform the constituent imperfect models.
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This result motivates an alternative strategy to the weather and climate prediction
problem. Current practice is that existing imperfect models of the climate system are
integrated independently of one another, starting from observed initial conditions to
provide forecasts for the future. To gauge model uncertainty, the outcomes of the
different models are combined into a single estimate of the probability density function5

of climate variables. This study indicates that better estimates of the true probability
function can be obtained if the models are taught, using past observations, to combine
the strengths of each into a single forecast of the probability density function.

A large gap exists between the simple, chaotic systems of this study and the com-
plex, state-of-the-art climate models. Many questions need to be addressed in order to10

apply the same approach to these models. There is the practical limitation of computer
capacity to enable the parallel execution of an ensemble of state-of-the-art models that
need to exchange information at every time step. In the study of Kirtman et al. (2003)
two atmospheric models were coupled to one ocean model so in principle it should
be feasible to couple several atmospheric models to several ocean models. Compu-15

tational grids in the various climate models differ, so regridding should be part of the
information exchange. Regridding is standard practice in the information exchange be-
tween the atmosphere and ocean components of climate models. An important issue
is the choice of state variables for the connections and the number of connections. In
this study all state variables were connected and had similar dynamics. In the climate20

models the different state variables are driven by different physical processes and dis-
play distinct dynamical behaviour at various time scales. It is not clear a priori which
state variables should be connected. In addition the number of connections that can
be learned on the basis of historical data is limited and therefore careful choices for
the connections need to be made. One possible approach would be to not connect25

the state variables, but the various parametrized physical processes that contribute to
the tendency of the state variables. Most of the model uncertainty resides in these
parametrized processes, so it makes sense to direct the learning to these processes.
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A hierarchy of earth system models of intermediate complexity (EMICs) could be
used to address these various issues. The EMIC’s resemble the state-of-the-art cli-
mate models in their structure, but differ in that the parameterization schemes for the
physical processes are much less elaborate, fewer processes are explicitly modeled
and the spatial resolution is much coarser. It has already been demonstrated that5

two different quasi-geostrophic channel models will synchronize with only limited con-
nections (Duane and Tribbia, 2001, 2004). A fruitful strategy might be to start from
a relatively simple climate model and add to the complexity in small steps and ad-
dress a specific issue at each step. In a similar fashion as in this study a ground truth
model is assumed at each time step and an ensemble of imperfect models is created10

by perturbing parameters and/or using different formulations for unresolved processes.
An additional complicating factor for the learning phase is the difference in time-scale

between atmosphere and ocean. Adjustments in the atmosphere have a short time
scale, but the ocean adapts to these changes on a much longer time-scale. Through
its influence on the atmosphere, the ocean introduces longer time scales in the atmo-15

sphere as well. So short integrations during the learning phase do not probe these
effects. This might hamper the learning. On the other hand, there are indications that
fast atmospheric processes are the primary cause of model systematic errors (Rodwell
and Jung, 2008).

An alternative learning strategy that is explicitly based on synchronization is outlined20

in the study by Duane et al. (2007). In this strategy the super-model equations con-
tain nudging terms to the truth as in our Eq. (5) and additional evolution equations are
formulated for the parameters. If the super-model synchronizes with the truth the pa-
rameters stop updating. This alternative learning strategy leads to a particularly simple
learning law that would be useful in the implementation of the super-model approach25

using more complex models. The strategy has been demonstrated with Lorenz sys-
tems (Duane et al., 2009).

A main result of this study is that super-model solutions are not unique. However, the
different super-models have similar quality and therefore this does not pose a severe
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problem and makes finding a suitable super-model solution easier. The existence of
quite distinct super-model solutions of good quality remains a bit of a mystery.

The main caveat is that the super-model is trained on historical data and in a climate
prediction problem is subsequently applied to simulate the response of the system to
an external forcing. It is therefore not guaranteed that the super-model will also simu-5

late this response more realistically. The problem is not peculiar to the super-modeling
approach, but arises with climate models generally, since they are “tuned” on historical
data and are used to predict the climate response to a change in greenhouse gas con-
centrations. In this study we obtained the encouraging result that for the Lorenz 1963
system the super-model was able to accurately predict the change to a doubling of the10

parameter ρ. In the super-modeling approach this issue can be further addressed in
a similar perfect model setting using climate models of increasing complexity.
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Table 1. Standard and perturbed parameters for the Lorenz 63 system.

σ ρ β

Truth 10 28 8
3

Model 1 13.25 (32%) 19 (32%) 3.5 (31%)
Model 2 7 (30%) 18 (36%) 3.7 (39%)
Model 3 6.5 (35%) 38 (36%) 1.7 (36%)
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Table 2. The connection coefficients of two super-model solutions of the Lorenz 63 system and
their differences.

Super-model 1 Super-model 2 Difference

Cx
12 −0.01 1.52 1.53

Cx
13 4.81 0.03 −4.78

Cx
21 5.69 13.28 7.59

Cx
23 13.75 14.99 1.24

Cx
31 17.64 21.51 3.87

Cx
32 −0.01 1.09 1.10

Cy
12 7.67 3.53 −4.14

Cy
13 18.14 27.36 9.22

Cy
21 3.64 0.00 −3.64

Cy
23 10.06 6.50 −3.56

Cy
31 2.71 3.89 1.18

Cy
32 9.79 6.93 −2.86

Cz
12 5.47 3.95 −1.52

Cz
13 4.03 12.24 8.21

Cz
21 10.72 3.50 −7.22

Cz
23 13.54 2.20 −11.34

Cz
31 8.70 2.89 −5.81

Cz
32 1.50 3.85 2.35
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Table 3. Mean, standard deviation (SD) and covariance for the three unconnected imperfect
models of the Lorenz 63 system. The values for the first two models are calculated analytically.
Statistics for model 3 are based on 500 runs of 5000 time units. Between brackets the 95%
error estimation is given.

Model 1 Model 2 Model 3

Mean x ±7.94 ±7.93 0.003 (0.002)
Mean y ±7.94 ±7.93 0.003 (0.010)
Mean z 18.00 17.00 34.23 (0.030)

SD x 0 0 7.628 (0.002)
SD y 0 0 9.416 (0.010)
SD z 0 0 8.765 (0.030)

Cov. xy 0 0 58.19 (0.036)
Cov. xz 0 0 0.007 (0.44)
Cov. yz 0 0 0.012 (0.68)
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Table 4. Mean, standard deviation (SD) and covariance for the truth and for the two super-
models of the Lorenz 63 system. Statistics are based on 500 runs of 5000 time units. Between
brackets the 95% error estimation is given.

Truth Super-model 1 Super-model 2

Mean x −0.006 (0.22) 0.007 (0.21) −0.000 (0.25)
Mean y −0.006 (0.22) 0.007 (0.21) −0.000 (0.25)
Mean z 23.549 (0.02) 22.93 (0.02) 23.19 (0.03)

SD x 7.924 (0.005) 7.717 (0.003) 7.812 (0.005)
SD y 9.011 (0.008) 8.791 (0.009) 8.723 (0.009)
SD z 8.623 (0.025) 8.596 (0.016) 8.549 (0.032)

Cov. xy 62.786 (0.07) 58.952 (0.05) 60.6416 (0.08)
Cov. xz −0.020 (0.76) 0.023 (0.74) 0.000 (0.88)
Cov. yz −0.016 (0.61) 0.021 (0.65) −0.001 (0.69)
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Table 5. Standard and perturbed parameters for the Rössler system.

a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30%) 0.14 (30%) 7.5 (32%)
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30%)
Model 3 0.27 (35%) 0.12 (40%) 4.0 (30%)
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Table 6. Mean, standard deviation (SD) and covariance for the three unconnected imperfect
models of the Rössler system. The 95% error estimation based on 500 runs of 5000 time units
is given between brackets.

Model 1 Model 2 Model 3

Mean x 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Mean y −1.603 (0.099) −0.710 (0.0009) −1.26 (0.0009)
Mean z 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)

SD x 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SD y 6.567 (0.099) 6.400 (0.0009) 4.080 (0.0009)
SD z 6.853 (0.229) 1.787 (0.0015) 3.896 (0.0022)

Covariance xy −11.21 (0.33) −4.492 (0.005) −4.49 (0.004)
Covariance xz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covariance yz −0.35 (0.39) 2.784 (0.004) 2.06 (0.003)
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Table 7. Mean, standard deviation (SD) and covariance for the truth and super-model of the
Rössler system. The 95% error estimation based on 500 runs of 5000 time units is given
between brackets.

Truth Super-model

Mean x 0.177 (0.003) 0.175 (0.003)
Mean y −0.886 (0.009) −0.878 (0.009)
Mean z 0.886 (0.009) 0.874 (0.009)

SD x 5.16 (0.04) 5.10 (0.03)
SD y 4.84 (0.03) 4.82 (0.02)
SD z 2.84 (0.04) 2.95 (0.03)

Covariance xy −4.693 (0.05) −4.702 (0.04)
Covariance xz 4.693 (0.05) 4.644 (0.04)
Covariance yz 2.183 (0.12) 2.025 (0.19)
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Table 8. Standard and perturbed parameters for the Lorenz 84 system.

a b F G

Truth 0.25 4 8 1
Model 1 0.33 (32%) 5.2 (30%) 10.4 (30%) 0.7 (30%)
Model 2 0.18 (28%) 5.2 (30%) 5.6 (30%) 1.3 (30%)
Model 3 0.18 (28%) 2.7 (33%) 10.4 (30%) 1.3 (30%)
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Table 9. Mean, standard deviation (SD) and covariance for the super-model and the standard
Lorenz 84 system. The 95% error estimation based on 500 runs of 5000 time units is given
between brackets.

Truth Super-model

Mean x 1.015 (0.008) 1.013 (0.008)
Mean y 0.060 (0.018) 0.058 (0.017)
Mean z 0.271 (0.005) 0.272 (0.004)

SD x 0.589 (0.014) 0.596 (0.014)
SD y 0.919 (0.002) 0.920 (0.002)
SD z 0.908 (0.002) 0.906 (0.002)

Covariance xy −0.053 (0.018) −0.050 (0.022)
Covariance xz −0.038 (0.004) −0.039 (0.003)
Covariance yz −0.075 (0.006) −0.063 (0.005)
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2 Van den Berge et al.: Combining imperfect models through learning

and Carroll, 1990; Duane et al., 2006). Therefore we expect
that in the super-modeling approach only limited information
needs to be exchanged to effectively influence the combined
behaviour of the imperfect models.

In this paper we use simple chaotic systems to develop
and demonstrate the super-modeling approach. We regard
the model with standard parameter values as ground truth and
create imperfect models by perturbing the parameter values.
Three imperfect models are connected and combined into a
super-model. The strength of the connections are determined
from data from the ground truth through a learning process.
The learning process takes the form of the minimization of a
cost function that measures the difference between the truth
and the super-model during short integrations.

In section 2 the form of the connections is introduced, fol-
lowed by the introduction of the cost function and the min-
imisation method. The super-modeling approach is applied
to the Lorenz 63, Rössler and Lorenz 84 systems in section
3 and 4. Discussion and conclusion of the method and ideas
for improvement can be found in section 5.

2 The super-modeling approach

To introduce the super-modeling approach we use the Lorenz
63 system (Lorenz, 1963). The Lorenz 63 system is often
used as a metaphore for the atmosphere, because of its abrupt
regime changes and unstable nature. The equations for the
Lorenz 63 system are

ẋ = σ(y−x)
ẏ = x(ρ−z)−y (1)
ż = xy−βz.

The standard parameter values are σ = 10, β = 8
3 and

ρ= 28. Numerical solutions are obtained by a fourth order
Runge-Kutta time stepping scheme, with a time step of 0.01.

2.1 Connecting imperfect models

Imperfect models are created by taking three copies of the
Lorenz 63 system with perturbed parameter values. A super-
model is created by the introduction of linear connection
terms

ẋk = σk(yk−xk)+
∑

j 6=k
Cxkj(xj−xk)

ẏk = xk(ρk−zk)−yk+
∑

j 6=k
Cykj(yj−yk) (2)

żk = xkyk−βkzk+
∑

j 6=k
Czkj(zj−zk), k= 1,2,3,

where k indexes the three imperfect models with perturbed
parameter values σk, βk and ρk and Cxkj , C

y
kj and Czkj are re-

ferred to as connection coefficients.

Fig. 1. The cost function is based on short integrations of the super-
model starting from observed initial conditions of the truth at times
ti and measures the mean-squared difference between the short evo-
lutions of the super-model and the truth as indicated by the shaded
areas. The short integrations span a time interval ∆ and d denotes
the fixed time interval between the initial conditions ti.

Each variable of each model is connected to the other two
models. This gives two connection coefficients for each of
the variables and a total number of 2×3×3 = 18 connec-
tion coefficients. These 18 coefficients will be learned from
data that sample the truth. The solution of the super-model,
denoted by subscript s, is taken to be the average of the im-
perfect models

xs =
1
3

(x1 +x2 +x3)

ys =
1
3

(y1 +y2 +y3) (3)

zs =
1
3

(z1 +z2 +z3).

2.2 Cost function

We assume that we have a long time series of observations of
the truth xo. We pick initial conditions xo(ti) from this long
time series at K times ti, i= 1,···,K, separated by fixed dis-
tances d. Short integrations of length ∆ are performed with
the super-model starting from theseK initializations (see fig-
ure 1). To measure the ability of the super-model to follow
the truth we introduce the following cost function F , that de-
pends on the vector of connection coefficients C.

F (C) =
1
K∆

K∑

i=1

∫ ti+∆

ti

|xs(C,t)−xo(t)|2γtdt (4)

The cost function is normalized by 1
K∆ , so that it repre-

sents the time averaged mean squared error. The factor γt

with 0< γ ≤ 1 is introduced to give stronger weight to the
errors close to the initial conditions. The idea behind this is
that the Lorenz 63 system displays sensitive dependence on

Fig. 1. The cost function is based on short integrations of the super-model starting from ob-
served initial conditions of the truth at times ti and measures the mean-squared difference
between the short evolutions of the super-model and the truth as indicated by the shaded ar-
eas. The short integrations span a time interval ∆ and d denotes the fixed time interval between
the initial conditions ti .
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Van den Berge et al.: Combining imperfect models through learning 3

initial conditions. Trajectories diverge not only due to model
imperfections, but also due to internal error growth: even a
perfect model deviates from the truth if started from slightly
different initial conditions and leads to a non-zero cost func-
tion due to chaos. This implies that the cost function mea-
sures a mixture of model errors and internal error growth .
Model errors dominate the inital divergence between model
and truth, but at later times internal error growth dominates.
Since we wish to measure the model errors, the factor γt dis-
counts the errors at later times to decrease the contribution of
internal error growth.

We base the choice of γ on the doubling time of errors.
From a large number of runs (107) from randomly perturbed
initial conditions we estimate the average doubling time τ
of the initial error. We choose γ such that γτ = 1

2 , so at
time τ the weight is reduced to 1

2 . For the Lorenz 63 sys-
tem τ = 0.75, which gives γ = 0.4. The length of the short
integrations is taken to be ∆ = 1, which is a little bit longer
than the doubling time. By comparison the average time for
one rotation in the Lorenz 63 system is 0.8. The separation d
between the initializations is 0.2 time units.

2.3 Minimisation

For a fixed choice of the number of initializations K the cost
function solely depends on the connection coefficients C in
equation (4). The super-model can be determined by finding
a minimum in the cost function in the 18 dimensional space
ofC. For this we employ the Fletcher-Reeves-Polak-Ribiere
Conjugate Gradient method (Fletcher and Reeves, 1963). It
uses the gradient of the cost function to approach minima and
stops when the gradient is (close to) zero.

We found it advantageous to make use of the dependence
of the cost function on the number of initializations K to
avoid shallow local minima. We minimize the cost function
first for a small number of initializations. Subsequently we
take this solution as the initial guess of the minimum for an
increased number of initializations to find the minimum for
this set. This process is repeated until we found that the min-
imum did not change any longer by increasing the number of
initializations. This issue is discussed further in section 3.

To avoid negative solutions for the connection coefficients
we added an extra term in the cost function in case one of
the coefficients becomes negative. This term is just the abso-
lute value of the negative connection coefficient, which easily
dominates the value of the cost function.

3 Results Lorenz 63

Three imperfect models are created by perturbing the stan-
dard parameter values as displayed in table 1. The perturbed
values differ from the standard values by 30% to 40% and in
each imperfect model parameter values have been increased
as well as decreased. With these perturbations the imper-

σ ρ β

Truth 10 28 8
3

Model 1 13.25 (32%) 19 (32%) 3.5 (31%)
Model 2 7 (30%) 18 (36%) 3.7 (39%)
Model 3 6.5 (35%) 38 (36%) 1.7 (36%)

Table 1. Standard and perturbed parameters for the Lorenz 63 sys-
tem.

x y

 10
 20
 30
 40
 50
 60
 70

z

Truth
Model 1

-20-15-10-5 0 5 10 15 20 -40-30-20-10  0  10 20 30

z

(a) Model 1

x y

 10
 20
 30
 40
 50
 60
 70

z

Truth
Model 2

-20-15-10-5 0 5 10 15 20 -40-30-20-10  0  10 20 30

z

(b) Model 2

x y

 0
 10
 20
 30
 40
 50
 60
 70

z

Truth
Model 3

-20-15-10-5 0 5 10 15 20 -40-30-20-10  0  10 20 30

z

(c) Model 3

Fig. 2. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 63 system (grey). The trajectory
for the imperfect models includes the transient evolution from the
initial condition towards the attractor.

fect models behave quite differently from the truth as can be
seen in figure 2. Both model 1 and 2 are attracted to a point,
whereas model 3 has a chaotic solution that resembles the
truth, but the attractor is displaced and larger. All models
were initiated from the same state and the transient evolution
towards the attractor is plotted as well.

By using bifurcation methods, it can be analytically shown
that there exists a Hopf bifurcation for the Lorenz 63 system
at ρH = σ(3+σ+β)

σ−1−β . This bifurcation marks different kinds of
dynamical behaviour. Both model 1 and 2 have values for ρ
below the Hopf bifurcation, whereas model 3 has a value for
ρ that lies far above the Hopf bifurcation. For the truth the
value of ρ lies above the Hopf bifurcation as well, which is

Fig. 2. Trajectories for the three unconnected imperfect models (black) and the standard
Lorenz 63 system (grey). The trajectory for the imperfect models includes the transient evolu-
tion from the initial condition towards the attractor.
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4 Van den Berge et al.: Combining imperfect models through learning

-20-15-10-5 0 5 10 15 20

-30
-20

-10
 0

 10
 20

 30

 0
 10
 20
 30
 40
 50

z

Lorenz 63 (connected, after learning)
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(a) Point of view 1

x y
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z

Lorenz 63 (connected, after learning)
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z

(b) Point of view 2

Fig. 3. Trajectories for the super-model (black) and the standard
Lorenz 63 system (grey) from two different points of view.

why model 3 and the truth have similar behaviour.
The minimization procedure outlined above successfully

identified a minimum of the cost function with a value of
0.02. By comparison the value of the cost function for an ar-
bitrary choice of all connection coefficients equal to unity
is 0.5. With the connection coefficients of this minimum
we performed a long integration with the super-model and
plotted the trajectory in figure 3. The attractor of the super-
model is very close to the true attractor. While integrating
the super-model, the imperfect models fall into an approx-
imate synchronous behaviour due to the connections: the
temporal correlations between the x, y, and z variables of
the three models are in excess of 0.95 (not shown) and the
sum of the time-mean distances between the three model
states normalized by the sum of the standard deviations of
xs, ys and zs is 0.34. In particular the z-values of the third
model are systematically larger than those of the other two
models (see figure 4). The improvement in the behaviour of
the connected imperfect model solutions as depicted in fig-
ure 4 (to be compared with figure 2) is a clear indication of
the feasibility of super-modeling in the context of this low-
dimensional chaotic system.

In addition to this minimum, we found that by choosing
different initial values for the connection coefficients in the
minimization procedure different local minima in the cost
function are obtained with values of the cost function that are
of comparable magnitude. In the remainder of this section we
will test the robustness of the learning process, research the
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Fig. 4. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the
standard Lorenz 63 system (grey).

issue of local minima and develop measures to determine the
quality of the different super-model solutions.

3.1 Robustness

The minimum of the cost function is determined on a limited
period of observations of length (K−1) ·d+∆ that we refer
to as the training set. We have chosen K = 200 to determine
the minimum and subsequently evaluate the cost function us-
ing the C values of this minimum for subsets of the training
set of length corresponding to K = 20,50,100,150. Cross
sections of the cost function around the minimum can be cre-
ated by changing one connection coefficient and keeping the
others fixed at the values of the minimum. The cross sections
for the different subsets are plotted in figure 5 for connection
coefficients Cy23 and Cz21, since these are typical examples.

In figure 5(a) the cost function for K = 200 displays one
well defined minimum Cy23 = 10.1. The position of the min-
imum does not change much when the cost function is cal-
culated using the different subsets. The minimum becomes
more pronounced as the training set is enlarged. The values
of the cost function monotonically converge and K = 200

Fig. 3. Trajectories for the super-model (black) and the standard Lorenz 63 system (grey) from
two different points of view.
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Fig. 3. Trajectories for the super-model (black) and the standard
Lorenz 63 system (grey) from two different points of view.

why model 3 and the truth have similar behaviour.
The minimization procedure outlined above successfully

identified a minimum of the cost function with a value of
0.02. By comparison the value of the cost function for an ar-
bitrary choice of all connection coefficients equal to unity
is 0.5. With the connection coefficients of this minimum
we performed a long integration with the super-model and
plotted the trajectory in figure 3. The attractor of the super-
model is very close to the true attractor. While integrating
the super-model, the imperfect models fall into an approx-
imate synchronous behaviour due to the connections: the
temporal correlations between the x, y, and z variables of
the three models are in excess of 0.95 (not shown) and the
sum of the time-mean distances between the three model
states normalized by the sum of the standard deviations of
xs, ys and zs is 0.34. In particular the z-values of the third
model are systematically larger than those of the other two
models (see figure 4). The improvement in the behaviour of
the connected imperfect model solutions as depicted in fig-
ure 4 (to be compared with figure 2) is a clear indication of
the feasibility of super-modeling in the context of this low-
dimensional chaotic system.

In addition to this minimum, we found that by choosing
different initial values for the connection coefficients in the
minimization procedure different local minima in the cost
function are obtained with values of the cost function that are
of comparable magnitude. In the remainder of this section we
will test the robustness of the learning process, research the
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Fig. 4. Trajectories for the three connected imperfect models with
connections determined by the learning process (black) and the
standard Lorenz 63 system (grey).

issue of local minima and develop measures to determine the
quality of the different super-model solutions.

3.1 Robustness

The minimum of the cost function is determined on a limited
period of observations of length (K−1) ·d+∆ that we refer
to as the training set. We have chosen K = 200 to determine
the minimum and subsequently evaluate the cost function us-
ing the C values of this minimum for subsets of the training
set of length corresponding to K = 20,50,100,150. Cross
sections of the cost function around the minimum can be cre-
ated by changing one connection coefficient and keeping the
others fixed at the values of the minimum. The cross sections
for the different subsets are plotted in figure 5 for connection
coefficients Cy23 and Cz21, since these are typical examples.

In figure 5(a) the cost function for K = 200 displays one
well defined minimum Cy23 = 10.1. The position of the min-
imum does not change much when the cost function is cal-
culated using the different subsets. The minimum becomes
more pronounced as the training set is enlarged. The values
of the cost function monotonically converge and K = 200

Fig. 4. Trajectories for the three connected imperfect models with connections determined by
the learning process (black) and the standard Lorenz 63 system (grey).
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Fig. 5. Cross section of the cost function for the super-model of the Lorenz 63 system calcu-
lated for different subsets of the original training set that was based on K=200 initializations.
The subsets vary in the number of initializations, i.e. K=20,50,100,150. A cross sections is
created by changing connection coefficients Cy

23 in (a) and Cz
21 in (b) and keeping the other

coefficients fixed at the values of the minimum found by the learning process using the training
set.
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Fig. 6. As in Fig. 5, except that the cost function is calculated for the training set with K=200
initializations (thick line) and 9 additional independent sets of observations of the same length
(thin lines) that were taken from a consecutive longer integration of the truth.
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Fig. 7. Autocorrelation as a function of delay time for x, y and z for the standard Lorenz 63
system and both super-models. The shaded area indicates the 95% error band for the auto-
correlation of the truth, based on 100 runs of 3000 time units.
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Fig. 9. Trajectories for the second super-model (black) and the stan-
dard Lorenz 63 system (grey). The larger attractor corresponds to
ρ= 56, the smaller to the standard value ρ= 28. The super-model
was trained on the standard parameter value.

a b c

Truth 0.2 0.2 5.7
Model 1 0.26 (30%) 0.14 (30%) 7.5 (32%)
Model 2 0.12 (40%) 0.28 (40%) 7.4 (30%)
Model 3 0.27 (35%) 0.12 (40%) 4. (30%)

Table 5. Standard and perturbed parameters for the Rössler system.

is less chaotic than in the Lorenz 63 system, since it lacks
the irregular transitions between two unstable points. The
equations are

ẋ = −(y+z)
ẏ = x+ay (6)
ż = b+z(x−c).

The parameter values for the truth are Rösslers values:
a= 0.2, b= 0.2 and c= 5.7. The values for the parameters
for the three imperfect models can be found in table 5. The
parameter perturbations applied are again of the order 30%
to 40% and in each of the imperfect models parameters have
been decreased as well as increased.

With these parameter perturbations marked changes occur
in the attractor as can be seen in figure 10. The attractor of
imperfect model 1 is still chaotic and has a similar shape but
the amplitude of the irregular oscillations is larger. Imperfect
model 2 and 3 have a periodic attractor of different shapes.

To determine the super-model we first need to choose val-
ues for the different parameters in the cost function. For the
Rössler system the time it takes for initial errors to double
is on average 6.7. Following the same procedure as for the
Lorenz 63 system we set γ= 0.9 and ∆ = 12 time units. The
number of initializations in this case is K = 300.

We minimized the cost function by varying the connection
coefficients of the super-model. This minimum is plotted in
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Fig. 10. Trajectories for the three unconnected imperfect models
(black) and the standard Rössler system (grey). Note the different
scales on the axes. The truth is the same in all three plots.

Fig. 9. Trajectories for the second super-model (black) and the standard Lorenz 63 system
(grey). The larger attractor corresponds to ρ=56, the smaller to the standard value ρ=28. The
super-model was trained on the standard parameter value.
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Fig. 10. Trajectories for the three unconnected imperfect models (black) and the standard
Rössler system (grey). Note the different scales on the axes. The truth is the same in all three
plots.
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Fig. 12. Trajectories for the three connected imperfect models with connections determined by
the learning process (black) and the standard Rössler system (grey).
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Fig. 13. Trajectories for the super-model (black) and the standard
Rössler system (grey) for two different points of view.

Model 1 Model 2 Model 3
Mean x 0.417 (0.082) 0.085 (0.0009) 0.34 (0.0009)
Mean y -1.603 (0.099) -0.710 (0.0009) -1.26 (0.0009)
Mean z 1.603 (0.230) 0.710 (0.0015) 1.26 (0.0022)
SD x 6.759 (0.082) 6.659 (0.0009) 4.463 (0.0008)
SD y 6.567 (0.099) 6.400 (0.0009) 4.080 (0.0009)
SD z 6.853 (0.229) 1.787 (0.0015) 3.896 (0.0022)

Covariance xy -11.21 (0.33) -4.492 (0.005) -4.49 (0.004)
Covariance xz 11.21 (0.33) 4.916 (0.006) 4.49 (0.004)
Covariance yz -0.35 (0.39) 2.784 (0.004) 2.06 (0.003)

Table 6. Mean, standard deviation (SD) and covariance for the three
unconnected imperfect models of the Rössler system. The 95% er-
ror estimation based on 500 runs of 5.000 time units is given be-
tween brackets.

error bounds of the true values.
To compare the temporal behaviour we calculated the au-

tocorrelation functions as plotted in figure 14 for the truth and
the super-model. They indicate a strongly periodic behaviour
with a long decorrelation time scale. For all three variables
the autocorrelation function is close to and sometimes within
the 95% error band, again indicating that the super-model is
a very good approximation of the truth.

Finally we look at the minimum nudging strength needed
to enable synchronization with the truth. We use the same
definition of synchronization as for the Lorenz 63 model with
the following values for the parameters δ= 0.05, ε= 0.4 and
T = 1000 time units. When the nudging term is applied to the

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (x)

Truth
Super model

(a) x

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (y)

Truth
Super model

(b) y

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

A
ut

oc
or

re
la

tio
n

Time

Autocorrelation Rossler (z)

Truth
Super model

(c) z

Fig. 14. Autocorrelation for the super-model (black) and the stan-
dard Rössler system (grey). The thickness of the grey line corre-
sponds to the 95% error band for the truth, based on 100 runs of
3.000 time units.

Fig. 13. Trajectories for the super-model (black) and the standard Rössler system (grey) for
two different points of view.
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Fig. 14. Autocorrelation for the super-model (black) and the standard Rössler system (grey).
The thickness of the grey line corresponds to the 95% error band for the truth, based on 100
runs of 3000 time units.
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Fig. 15. Trajectories for the three unconnected imperfect models
(black) and the standard Lorenz 84 system (grey).
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Fig. 16. Cross section of the cost function for the super-model of
the Lorenz 84 system for the training set (thick line) with length
corresponding to K = 200 and 9 additional independent sets of the
same length (thin lines). Cross sections are created by changing the
connection coefficient Cy32 and keeping the others fixed.

Truth Minimum
Mean x 1.015 (0.008) 1.013 (0.008)
Mean y 0.060 (0.018) 0.058 (0.017)
Mean z 0.271 (0.005) 0.272 (0.004)
SD x 0.589 (0.014) 0.596 (0.014)
SD y 0.919 (0.002) 0.920 (0.002)
SD z 0.908 (0.002) 0.906 (0.002)

Covariance xy -0.053 (0.018) -0.050 (0.022)
Covariance xz -0.038 (0.004) -0.039 (0.003)
Covariance yz -0.075 (0.006) -0.063 (0.005)

Table 9. Mean, standard deviation (SD) and covariance for the
super-model and the standard Lorenz 84 system. The 95% error
estimation based on 500 runs of 5.000 time units is given between
brackets.

the three imperfect models in the super-model are in excess
of 0.99 and the sum of the time-mean distances between the
three model states normalized by the sum of the standard de-
viations of xs, ys and zs is only 0.03. The model trajectories
stay very close together on average. The reason for this might
be found in the high value of several connection coefficients
(for instance Cx32 = 115, Cy23 = 147 and Cz31 = 169). Such
high values make synchronization easier since these connec-
tion terms in the equations bring the model solutions closer
together. Maximum values of the connection coefficients in
the other two systems are a factor of 10 smaller.

Again we use the same measures to evaluate the quality of
the super-model solution. The mean, standard deviation and
covariance for the truth and the super-model are presented in
table 9. These statistics are in excellent agreement.

In order to evaluate the temporal behaviour we compare
the autocorrelation functions in figure 18. Up to a delay time
of 14 time units the autocorrelation functions of the truth are
well reproduced by the super model both in shape as well as
in periodicity.

The Lorenz 84 system with standard parameter values syn-

Fig. 15. Trajectories for the three unconnected imperfect models (black) and the standard
Lorenz 84 system (grey).
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Fig. 16. Cross section of the cost function for the super-model of the Lorenz 84 system for
the training set (thick line) with length corresponding to K=200 and 9 additional independent
sets of the same length (thin lines). Cross sections are created by changing the connection
coefficient Cy

32 and keeping the others fixed.
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Fig. 17. Trajectories for the super-model (black) and the standard
Lorenz 84 system(grey) for two points of view.

chronizes with the truth for a strength of the nudging term
n = 1 in the y variable only, using δ = 0.1, ε = 0.5 and
T = 1000 in definition 1. The super-model also synchronizes
with the truth, but it needs a larger nudging of n= 4. None
of the imperfect models is able to synchronize with the truth,
when the nudging is in the y variable only.

Concluding this section, super-model solutions can be
found that reproduce the true system very well and outper-
form the individual imperfect models for the Lorenz 84 sys-
tem as well. For this system, the minimization process was
found to be more sensitive to the length of the short integra-
tions ∆ and the discount parameter γ, requiring the use of
the more robust amoeba minimization procedure.

5 Conclusion and Discussion

In this study we developed and tested a novel multi model en-
semble approach in which imperfect models of an observable
system are combined into a single super-model by letting the
models exchange information during the simulation. The in-
formation exchange takes the form of linear connections with
weights that are learned from past data such that the super-
model minimizes the mean squared errors in short simula-
tions initialized from past observed states. The main result
of this study is that it is possible to construct super-models in
the context of simple low-dimensional chaotic systems that
outperform the constituent imperfect models.

This result motivates an alternative strategy to the weather
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Fig. 18. Autocorrelation for the super-model (black) and the stan-
dard Lorenz 84 system (white) The shaded area corresponds to the
95% error band for the truth based on 100 runs of 3.000 time units.

Fig. 17. Trajectories for the super-model (black) and the standard Lorenz 84 system (grey) for
two points of view.
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Fig. 18. Autocorrelation for the super-model (black) and the standard Lorenz 84 system (white)
The shaded area corresponds to the 95% error band for the truth based on 100 runs of 3000
time units.
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